Corollary formulas derived from
               the Brunardot Theorem:  c2 = 2v2 - s2


          Primary Corollaries:

U = d - L = 1

The Natural Unit, U, establishes the relative unit value for all other integers.

U = A Proof of One.

The Integer One is a Relativistic Function of Alpha (Motion) and Tau.  (Speed, Spin, Space, and Time)


h = 2(A2 - A); or, A2 - A


i1 = 2A - 1


i1 = square root of (2h + 1)

i2 = 2A2 - 4A + 1;

i2 = h - (2A - 1) = h - i1

i3 = 2(A2-A) - 1;

i3 = h - 1

i4 = 2(A2-A) + 1;

i4 = h + 1

i5 = 2A2 - 1;

i5 = h + i1;

i5   = i1 + h . . .

i6 = 4A2 - 6A + 1;

i6 = 2h - i1;

i6   = i2 + h . . .

i7 = 4A2 - 4A - 1;

i7 = 2h - 1;

i7   = i3 + h . . .

i8 = 4A2 - 4A + 1;

i8 = 2h + 1;

i8   = i4 + h . . .

i8 = (2A - 1)2 = i2 i12 = i8 + h . . .

in   = in-4 + h . . .


Tau (T)
= ((i2 - 1) / 2) / 2A(A - 1)

Tau (T) = (((i2 + 1) / 2) - 1) / h

Tau (T) = L / 2hp

Tau (T) = (p - 1) / h

p = (i2 + 1) / 2

s = p2 - p

v = p + s

a = s + v

M = s2 / v

r = i2; or, v - M

d = (i4 + 1) / 2; or 2M + r

L = d - 1

HR= L / h

E = v2 - s2
F = square root of E
c2  = E + v2


And, thus, some Secondary Corollaries:


a = 2p2 - p

a = 2s + p

c2  = 2E + s2

c2  = F2 + v2
d = L + 1
d = L + 2p - r
d  = r2 - L
d = 2v - r
d = i4 - L
E = rv
E = c2 - v2
E = ( c2 - s2) / 2
E = F2
F = square root of c2 - v2
F = square root of v2 - s2
F = square root of rv
F = ip
HR = T(r + 1)
HR = 2pT
L = i4 - d
L = (i4 - 1) / 2

L = 2hpT
p = 2AT (A - 1) + 1 = h + 1
p = (i2 + 1) / 2

p = L / 2hT
r = 2v - d
r = 2p - 1
r2 = d + L
s = (i4 - 1) / 4
s = p(p - 1)
s2 = v2 - E
U = 2p - r
U = i4 - 2L

U = i4 - 4hpT
U = p - 2AT (A - 1)
U = HR /T - r

U = p - hT
v = p2
v = E / r
v2 = E + s2
v2 = (c2 + s2) / 2